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In this paper we report on the syntheses and characterizations 
of the pentacarbonylmetallate trianions of niobium and tantalum, 
which are the first compounds to contain these elements in a formal 
oxidation state of - 3 . Although metal carbonyl trianions of other 
second- and third-row transition elements have been claimed,2 

these are also the first examples to have been isolated as ana­
lytically pure substances. 

Substantial differences in the carbonyl chemistry of first-row 
transition metals and that of second and third row homologues 
are often observed. For example, while Cr(CO)6 readily reacts 
with Na-NH3 to provide high yields of Na2Cr(CO)5, corre­
sponding reductions of M(CO)6 (M = Mo, W) give only very low 
yields of thermally unstable Na2M(CO)5.3,4 For these reasons 
it was by no means obvious whether reductions of the isoelectronic 
M(CO)6" (M = Nb, Ta) would provide species analogous to the 
previously reported V(CO)5

3"-5 

Unlike the Na-NH 3 reductions of Mo(CO)6 and W(CO)6, 
however, [Na(diglyme)2] [M(CO)6]6 are smoothly reduced by 3 
equiv of sodium in liquid ammonia at -78° C to provide deep red 
solutions containing thermally unstable Na3[M(CO)5], according 
to eq 1. After filtration and cation exchange, deep red (M = 

Na[M(CO)6] + 3Na — Na3[M(CO)5] + V2[Na2C2O2Ji (1) 

Nb) or deep brown-red (M = Ta), slightly soluble, and apparently 
amorphous solids are obtained in 40-50% yields, which provide 
satisfactory analyses for unsolvated Cs3[M(CO)5].7 These ma­
terials have infrared spectra that are nearly superimposable on 
those of Cs3[V(CO)5] .

5 Although they appear to be only slightly 
less thermally stable than the vanadium analogue, as dry solids 
they are much more shock sensitive. One sample of Cs3[Ta(CO)5] 
exploded on standing at room temperature under an inert at­
mosphere. In this respect they resemble the unstable K3[V(CO)5] .

5 

For these reasons, their chemical studies have been largely limited 
to the reactions of M(CO)5

3" formed in situ in liquid ammonia. 
Treatment of liquid ammonia solutions of Na3[M(CO)5] 

dropwise with 1 equiv of Ph3SnCl in THF provides, after me­
tathesis, 70-80% yields of orange to orange-red, crystalline 
[Et4N]2[Ph3SnM(CO)5].

8 These oxygen-sensitive materials have 
infrared spectra in the v(CO) region that are consistent with the 
presence of a substituted dianion of C41, symmetry.8 Also, nearly 
quantitative yields of the previously unknown Na[M(CO)5NH3] 
are obtained from the reaction OfNa3[M(CO)5] with ammonium 
chloride in liquid ammonia. Although the sodium salts are 
thermally unstable, 40-45% yields of red violet (M = Nb) to deep 
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violet (M = Ta) crystalline [Ph4As][M(CO)5NH3] may be ob­
tained by metathesis.9 These ammine complexes, like their 
vanadium analogue,10 are very labile in solution and readily react 
at -20 to O 0C with a variety of 7r-acceptor ligands such as PR3, 
P(OR)3, and RNC to provide 50-80% isolated yields of the 
corresponding M(CO)5L". For example, the first isocyanide 
derivatives of tantalum and niobium carbonyls were obtained by 
treating ammonia solutions of Na[M(CO)5NH3] with r-BuNC 
followed by cation exchange and crystallization. Orange 
[Et4N][M(CO)5CN-J-Bu] were thereby obtained in 50-60% 
yields.11 The chemistry of M(CO)5

3" reported herein is sum­
marized in eq 2 and 3. 

Ph3SnCl 

Ph3SnM(CO)5
2" - M(CO)5

3" 
2NH4

+ 

M(CO)5NH3" + H2 (2) 

(M = Nb, Ta) 

M(CO)5NH3" + L "2°'°°°C> M(CO)5L" + NH3 

(L = PR3, P(OR)3, RNC) 
(3) 

It is anticipated that the carbonyl trianions of niobium and 
tantalum will be especially important as precursors to new metal 
clusters containing these elements. Studies in this latter area are 
in progress. 
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The title reaction, if successful, would result in the direct 
formation of a wide variety of ring systems.1"3 
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